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Abstract

Table filling based relational triple extraction
methods are attracting growing research inter-
ests due to their promising performance and
their abilities on extracting triples from com-
plex sentences. However, this kind of methods
are far from their full potential because most of
them only focus on using local features but ig-
nore the global associations of relations and of
token pairs, which increases the possibility of
overlooking some important information dur-
ing triple extraction. To overcome this defi-
ciency, we propose a global feature-oriented
triple extraction model that makes full use of
the mentioned two kinds of global associations.
Specifically, we first generate a table feature
for each relation. Then two kinds of global
associations are mined from the generated ta-
ble features. Next, the mined global associ-
ations are integrated into the table feature of
each relation. This “generate-mine-integrate”
process is performed multiple times so that
the table feature of each relation is refined
step by step. Finally, each relation’s table is
filled based on its refined table feature, and
all triples linked to this relation are extracted
based on its filled table. We evaluate the pro-
posed model on three benchmark datasets. Ex-
perimental results show our model is effective
and it achieves state-of-the-art results on all of
these datasets. The source code of our work is
available at: https://github.com/neukg/GRTE.

1 Introduction

Relational triple extraction (RTE) aims to extract
triples from unstructured text (often sentences), and
is a fundamental task in information extraction.
These triples have the form of (subject, relation,
object) , where both subject and object are entities
and they are semantically linked by relation. RTE
is important for many downstream applications.

†Both authors contribute equally to this work and share
co-first authorship.

∗Corresponding author.

Nowadays, the dominant methods for RTE are
the joint extraction methods that extract entities
and relations simultaneously in an end-to-end way.
Some latest joint extraction methods (Yu et al.,
2019; Yuan et al., 2020; Zeng et al., 2020; Wei
et al., 2020; Wang et al., 2020; Sun et al., 2021)
have shown their strong extraction abilities on di-
verse benchmark datasets, especially the abilities
of extracting triples from complex sentences that
contain overlapping or multiple triples.

Among these existing joint extraction methods,
a kind of table filling based methods (Wang et al.,
2020; Zhang et al., 2017; Miwa and Bansal, 2016;
Gupta et al., 2016) are attracting growing research
attention. These methods usually maintain a table
for each relation, and each item in such a table
is used to indicate whether a token pair possess
the corresponding relation or not. Thus the key
of these methods is to fill the relation tables accu-
rately, then the triples can be extracted based on
the filled tables. However, existing methods fill
relation tables mainly based on local features that
are extracted from either a single token pair (Wang
et al., 2020) or the filled history of some limited
token pairs (Zhang et al., 2017), but ignore fol-
lowing two kinds of valuable global features: the
global associations of token pairs and of relations.

These two kinds of global features can reveal
the differences and connections among relations
and among token pairs. Thus they are helpful to
both the precision by verifying the extracted triples
from multiple perspectives, and the recall by de-
ducing new triples. For example, given a sentence
“Edward Thomas and John are from New York City,
USA.”, when looking it from a global view, we can
easily find following two useful facts. First, the
triple (Edward Thomas, live_in, New York) is help-
ful for extracting the triple (John, live_in, USA),
and vice versa. This is because the properties of
their (subject, object) pairs are highly similar: (i)
the types of both subjects are same (both are per-
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sons); (ii) the types of both objects are same too
(both are locations). Thus these two entity pairs are
highly possible to possess the same kind of relation.
Second, the mentioned two triples are helpful for
deducing a new triple (New York, located_in, USA).
This is because that: (i) located_in requires both its
subjects and objects be locations; (ii) located_in
is semantically related to live_in; (iii) live_in in-
dicates its objects are locations. Thus there is a
clear inference path from these two known triples
to the new triple. Obviously, these global features
are impossible to be contained in local features.

Inspired by above analyses, we propose a global
feature-oriented table filling based RTE model that
fill relation tables mainly based on above two kinds
of global associations. In our model, we first gen-
erate a table feature for each relation. Then all re-
lations’ table features are integrated into a subject-
related global feature and an object-related global
feature, based on which two kinds of global associ-
ations are mined with a Transformer-based method.
Next, these two kinds of mined global associations
are used to refine the table features. These steps
are performed multiple times so that the table fea-
tures are refined gradually. Finally, each table is
filled based on its refined feature, and all triples are
extracted based on the filled tables.

We evaluate the proposed model on three bench-
mark datasets: NYT29, NYT24, and WebNLG.
Extensive experiments show that it consistently
outperforms the existing best models and achieves
the state-of-the-art results on all of these datasets.

2 Related Work

Early study (Zelenko et al., 2003; Zhou et al., 2005;
Chan and Roth, 2011) often takes a kind of pipeline
based methods for RTE, which is to recognize all
entities in the input text first and then to predict
the relations for all entity pairs. However, these
methods have two fatal shortcomings. First, they
ignore the correlations between entity recognition
and relation prediction. Second, they tend to suffer
from the error propagation issue.

To overcome these shortcomings, researchers
begin to explore the joint extraction methods that
extract entities and relations simultaneously. Ac-
cording to the research lines taken, we roughly clas-
sify existing joint methods into three main kinds.

Tagging based methods. This kind of methods
(Zheng et al., 2017; Yu et al., 2019; Wei et al., 2020)
often first extract the entities by a tagging based
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Figure 1: Examples of table filling and decoding
strategy. Arrows with different colors correspond to
different search routes defined in Algorithm 1.

method, then predict relations. In these models, bi-
nary tagging sequences are often used to determine
the start and end positions of entities, sometimes to
determine the relations between two entities too.

Seq2Seq based methods. This kinds of meth-
ods (Zeng et al., 2018, 2019, 2020; Nayak and Ng,
2020) often view a triple as a token sequence, and
convert the extraction task into a generation task
that generates a triple in some orders, such as first
generates a relation, then generates entities, etc.

Table filling based methods. This kind of meth-
ods (Miwa and Bansal, 2016; Gupta et al., 2016;
Zhang et al., 2017; Wang et al., 2020) would main-
tain a table for each relation, and the items in this
table usually denotes the start and end positions
of two entities (or even the types of these entities)
that possess this specific relation. Accordingly, the
RTE task is converted into the task of filling these
tables accurately and effectively.

Besides, researchers also explore other kinds
of methods. For example, Bekoulis et al. (2018)
formulate the RTE task as a multi-head selection
problem. Li et al. (2019) cast the RTE task as a
multi-turn question answering problem. Fu et al.
(2019) use a graph convolutional networks based
method and Eberts and Ulges (2019) use a span
extraction based method. Sun et al. (2021) propose
a multitask learning based RTE model.

3 Methodology

3.1 Table Filling Strategy

Given a sentence S = w1w2 . . . wn, we will main-
tain a table tabler (the size is n× n) for each rela-
tion r (r ∈ R, and R is the relation set). The core
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at the first iteration. The dotted arrow to TG means that TF (N) will be inputted into TG only at the last iteration.

of our model is to assign a proper label for each
table item (corresponding to a token pair). Here
we define the label set as L = {"N/A", "MMH",
"MMT", "MSH", "MST", "SMH", "SMT", "SS"}.

For a token pair indexed by the i-th row and the
j-th column, we denote it as (wi, wj) and denote
its label as l. If l ∈ {"MMH", "MMT", "MSH",
"MST", "SMH", "SMT"}, it means (wi, wj) is
correlated with a (subject, object) pair. In such
case, the first character in the label refers to the
subject is either a multi-token entity ("M") or a
single-token entity ("S"), the second character in
the label refers to the object is either a multi-token
entity ("M") or a single-token entity ("S"), and the
third character in the label refers to either both wi

and wj are the head token of the subject and object
("H") or both are the tail token of the subject and
object ("T"). For example, l = "MMH" means wi

is the head token of a multi-token subject and wj is
the head token of a multi-token object. As for other
cases, l = "SS" means (wi, wj) is an entity pair; l =
"N/A" means wi and wj are none of above cases.

Figure 1 demonstrates partial filled results for
the live_in relation given the sentence "Edward
Thomas and John are from New York City, USA.",
where there are (subject, object) pairs of (Edward
Thomas, New York City), (Edward Thomas, New
York), (Edward Thomas, USA), (John, New York
City), (John, New York) and (John, USA).

An main merit of our filling strategy is that each
of its label can not only reveal the location informa-
tion of a token in a subject or an object, but also can
reveal whether a subject (or an object) is a single
token entity or multi token entity. Thus, the total

number of items to be filled under our filling strat-
egy is generally small since the information carried
by each label increases. For example, given a sen-
tence S = w1w2 . . . wn and a relation set R, the
number of items to be filled under our filling strat-
egy is n2|R|, while this number is (2|R|+ 1)n

2+n
2

under the filling strategy used in TPLinker (Wang
et al., 2020) (this number is copied from the orig-
inal paper of TPLinker directly). One can easily
deduce that (2|R|+ 1)n

2+n
2 > n2|R|.

3.2 Model Details

The architecture of our model is shown in Figure 2.
It consists of four main modules: an Encoder mod-
ule, a Table Feature Generation (TFG) module,
a Global Feature Mining (GFM) module, and a
Triple Generation (TG) module. TFG and GFM
are performed multiple time with an iterative way
so that the table features are refined step by step.
Finally, TG fills each table based on its correspond-
ing refined table feature and generates all triples
based on these filled tables.
Encoder Module Here a pre-trained BERT-Base
(Cased) model (Devlin et al., 2018) is used as En-
coder. Given a sentence, this module firstly en-
codes it into a token representation sequence (de-
noted as H∈ Rn×dh).

Then H is fed into two separated Feed-Forward
Networks (FFN) to generate the initial subjects
feature and objects feature (denoted as H

(1)
s and

H
(1)
o respectively), as written with Eq. (1).

H(1)
s = W1H + b1

H(1)
o = W2H + b2

(1)
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where W1/2 ∈ Rdh×dh are trainable weights and
b1/2 ∈ Rdh are trainable biases.
TFG Module We denote the subjects and objects
features at the t-th iteration as H

(t)
s and H

(t)
o re-

spectively. Then taking them as input, this module
generates a table feature for each relation.

Here the table feature for the relation r at the
t-th iteration is denoted as TF

(t)
r , and it has the

same size with tabler. Each item in TF
(t)
r repre-

sents the label feature for a token pair. Specifically,
for a pair (wi, wj), we denoted its label feature as
TF

(t)
r (i, j), which is computed with Eq.(2).

TF (t)
r (i, j) = Wr ReLU(H

(t)
s,i ◦H

(t)
o,j) + br (2)

where ◦ denotes the Hadamard Product operation,
ReLU is the activation function, H(t)

s,i and H
(t)
o,j are

the feature representations of tokens wi and wj at
the t-th iteration respectively.
GFM Module This module mines the expected
two kinds of global features, based on which new
subjects and objects features are generated. Then
these two new generated features will be fed back
to TFG for next iteration. Specifically, this module
consists of following three steps.

Step 1, to combine table features. Supposing
current iteration is t, we first concatenate the ta-
ble features of all relations together to generate an
unified table feature (denoted as TF (t)). And this
unified table feature will contain the information of
both token pairs and relations. Then we use a max
pooling operation and an FFN model on TF (t) to
generate a subject-related table feature (TF (t)

s ) and
an object-related table feature (TF (t)

o ) respectively,
as shown in Eq.(3).

TF (t)
s = Wsmaxpool

s
(TF (t)) + bs

TF (t)
o = Womaxpool

o
(TF (t)) + bo

(3)

where Ws/o ∈ R(|L|×|R|)×dh are trainable weights,
and bs/o ∈ Rdh are trainable biases.

Here the max pooling is used to highlight the
important features that are helpful for the subject
and object extractions respectively from a global
perspective.

Step 2, to mine the expected two kinds of global
features. Here we mainly use a Transformer-based
model (Vaswani et al., 2017) to mine the global
associations of relations and of token pairs.

First, we use a Multi-Head Self-Attention method
on TF

(t)
s/o to mine the global associations of rela-

tions. The self-attention mechanism can reveal the

importance of an item from the perspective of other
items, thus it is very suitable to mine the expected
relation associations.

Then we mine the global associations of token
pairs with a Multi-Head Attention method. The
sentence representation H is also taken as part of
input here. We think H may contain some global
semantic information of a token to some extent
since the input sentence is encoded as a whole,
thus it is helpful for mining the global associations
of token pairs from a whole sentence perspective.

Next, we generate new subjects and objects fea-
tures with an FFN model.

In summary, the whole global association mining
process can be written with following Eq.(4).

ˆTF
(t)
s/o = MultiHeadSelfAtt(TF

(t)
s/o)

Ĥ
(t+1)
(s/o) = MultiHeadAtt( ˆTF

(t)
s/o, H,H)

H
(t+1)
(s/o) = ReLU(Ĥ

(t+1)
(s/o) W + b)

(4)

Step 3, to further tune the subjects and objects
features generated in previous step.

One can notice that if we flat the iterative mod-
ules of TFG and GFM, our model would equal to a
very deep network, thus it is possible to suffer from
the vanishing gradient issue. To avoid this, we use
a residual network to generate the final subjects
and objects features, as written in Eq. (5).

H
(t+1)
(s/o) = LayerNorm (H

(t)
(s/o) +H

(t+1)
(s/o) ) (5)

Finally, these subjects and objects features are
fed back to the TFG module for next iteration. Note
that the parameters of TFG and GFM are shared
cross different iterations.
TG Module Taking the table features at the last
iteration (TF (N)) as input, this module outputs all
the triples. Specifically, for each relation, its table
is firstly filled with the method shown in Eq. (6).

ˆtabler(i, j) = softmax (TF (N)
r (i, j))

tabler(i, j) = argmax
l∈L

( ˆtabler(i, j)[l])
(6)

where ˆtabler(i, j) ∈ R|L|, and tabler(i, j) is the
labeled result for the token pair (wi, wj) in the
table of relation r.

Then, TG decodes the filled tables and deduces
all triples with Algorithm 1. The main idea of our
algorithm is to generate an entity pair set for each
relation according to its filled table. And each en-
tity pair in this set would correspond to a minimal
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Algorithm 1 Table Decoding Strategy
Input: The relation set R, the sentence S = {w1, w2, ..., wn},

and all tabler ∈ Rn×n for each relation r ∈ R.
Output: The predicted triplet set, RT .
1 Define two temporary triple sets H and T, and initialize

H,T,RT ← ∅, ∅, ∅.
2 for each r ∈ R do
3 Define three temporary sets WPH

r , WPT
r , and WPS

r ,
which consist of token pairs whose ending tags in
tabler are "H", "T" and "S" respectively.

4 for each (wi, wj) ∈WPH
r do // forward search

5 1) Find a token pair (wk, wm) from WPT
r that

satisfies: i ≤ k, j ≤ m, tabler[(wi, wj)] and
tabler[(wk, wm)] match, (wi, wj) and (wk, wm)
are closest in the table, and the number of words
contained in subject wi...k and object wj...m are
consistent with the corresponding tags.

6 2) Add (wi...k, r, wj...m) to H.
7 end for
8 for each (wk, wm) ∈WPT

r do // reverse search
9 1) Find a token pair (wi, wj) from WPH

r with a
similar process as forward search.

10 2) Add (wi...k, r, wj...m) to T.
11 end for
12 for each (wi, wj) ∈WPS

r do
13 Add (wi, r, wj) to RT
14 end for
15 end for
16 RT ← RT ∪H ∪ T
17 return RT

continuous token span in the filled table. Then each
entity pair would form a triple with the relation that
corresponds to the considered table. Specifically, in
our decoding algorithm, we design three paralleled
search routes to extract entity pairs of each rela-
tion. The first one (forward search, red arrows in
Figure 1) generates entity pairs in an order of from
head tokens to tail tokens. The second one (reverse
search, green arrows in Figure 1) generates entity
pairs in an order of from tail tokens to head tokens,
which is designed mainly to handle the nested en-
tities. And the third one (blue arrows in Figure 1)
generates entity pairs that are single-token pairs.

Here we take the sentence shown in Figure 1 as
a concrete sample to further explain our decoding
algorithm. For example, in the demonstrated table,
the token pair (Edward, New) has an "MMH" label,
so the algorithm has to search forward to concate-
nate adjacent token pairs until a token pair that has
a label "MMT" is found, so that to form the com-
plete (subject, object) pair. And the forward search
would be stopped when it meets the token pair
(Thomas, York) that has the label "MMT". How-
ever, the formed entity pair (Edward Thomas, New
York) is a wrong entity pair in the demonstrated ex-
ample since the expected pair is (Edward Thomas,
New York City). Such kind of errors are caused by

Category
NYT29 NYT24 WebNLG

Train Test Train Test Train Test

Normal 53444 2963 37013 3266 1596 246
EPO 8379 898 9782 978 227 26
SEO 9862 1043 14735 1297 3406 457

ALL 63306 4006 56195 5000 5019 703
Relation 29 24 216 / 171∗

Table 1: Statistics of datasets. EPO and SEO refer to
entity pair overlapping and single entity overlapping
respectively (Zeng et al., 2018). Note that a sentence
can belong to both EPO and SEO. And 216 / 171∗

means that there are 216 / 171 relations in WebNLG
and WebNLG∗ respectively.

the nested entities in the input sentence, like the
“New York” and “New York City”. These nested en-
tities will make the forward search stops too early.
In such case, the designed reverse search will play
an important supplementary role. In the discussed
example, the reverse search will first find the token
pair (Thomas, City) that has an "MMT" label and
has to further find a token pair that has an "MMH"
label. Thus it will precisely find the expected entity
pair (Edward Thomas, New York City).

Of course, if there are few nested entities in a
dataset, the reverse search can be removed, which
would be better for the running time. Here we leave
it to make our model have a better generalization
ability so that can be used in diverse datasets.

3.3 Loss Function

We define the model loss as follows.

L =

n∑
i=1

n∑
j=1

|R|∑
r=1

− log p
(
yr,(i,j) = tabler(i, j)

)
=

n∑
i=1

n∑
j=1

|R|∑
r=1

− log ˆtabler(i, j)[yr,(i,j)]

(7)
where yr,(i,j) ∈ [1, |L|] is the index of the ground
truth label of (wi, wj) for the relaion r.

4 Experiments

4.1 Experimental Settings

Datasets We evaluate our model on three bench-
mark datasets: NYT29 (Takanobu et al., 2019),
NYT24 (Zeng et al., 2018) and WebNLG (Gardent
et al., 2017). Both NYT24 and WebNLG have two
different versions according to following two an-
notation standards: 1) annotating the last token of
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each entity, and 2) annotating the whole entity span.
Different work chooses different versions of these
datasets. To evaluate our model comprehensively,
we use both kinds of datasets. For convenience,
we denote the datasets based on the first annota-
tion standard as NYT24∗ and WebNLG∗, and the
datasets based on the second annotation standard
as NYT24 and WebNLG. Some statistics of these
datasets are shown in Table 1.
Evaluation Metrics The standard micro precision,
recall, and F1 score are used to evaluate the results.

Note that there are two match standards for the
RTE task: one is Partial Match that an extracted
triplet is regarded as correct if the predicted relation
and the head tokens of both subject entity and ob-
ject entity are correct; and the other is Exact Match
that a triple would be considered correct only when
its entities and relation are completely matched
with a correct triple. To fairly compare with exist-
ing models, we follow previous work (Wang et al.,
2020; Wei et al., 2020; Sun et al., 2021) and use
Partial Match on NYT24∗ and WebNLG∗, and use
Exact Match on NYT24, NYT29, and WebNLG.

In fact, since only one token of each entity in
NYT24∗ and WebNLG∗ is annotated, the results
of Partial Match and Exact Match on these two
datasets are actually the same.
Baselines We compare our model with following
strong state-of-the-art RTE models: CopyRE (Zeng
et al., 2018), GraphRel (Fu et al., 2019), Copy-
MTL (Zeng et al., 2020), OrderCopyRE (Zeng et al.,
2019), ETL-Span (Yu et al., 2019), WDec (Nayak
and Ng, 2020), RSAN (Yuan et al., 2020),
RIN (Sun et al., 2020), CasRel (Wei et al., 2020),
TPLinker (Wang et al., 2020), SPN (Sui et al.,
2020), and PMEI (Sun et al., 2021).

Most of the experimental results of these base-
lines are copied from their original papers directly.
Some baselines did not report their results on some
of the used datasets. In such case, we report the
best results we obtained with the provided source
code (if the source codes is available). For simplic-
ity, we denote our model as GRTE, the abbreviation
of Global feature oriented RTE model.
Implementation Details Adam (Kingma and Ba,
2015) is used to optimize GRTE. The learning rate,
epoch and batch size are set to 3×10−5, 50, 6 re-
spectively. The iteration numbers (the hyperparam-
eter N ) on NYT29, NYT24∗, NYT24, WebNLG∗

and WebNLG are set to 3, 2, 3, 2, and 4 respec-
tively. Following previous work (Wei et al., 2020;

Sun et al., 2021; Wang et al., 2020), we also imple-
ment a BiLSTM-encoder version of GRTE where
300-dimensional GloVe embeddings (Pennington
et al., 2014) and 2-layer stacked BiLSTM are used.
In this version, the hidden dimension of these 2
layers are set as 300 and 600 respectively. All the
hyperparameters reported in this work are deter-
mined based on the results on the development sets.
Other parameters are randomly initialized. Follow-
ing CasRel and TPLinker, the max length of input
sentences is set to 100.

4.2 Main Experimental Results

The main results are in the top two parts of Table 2,
which show GRTE is very effective. On all datasets,
it achieves almost all the best results in term of F1
compared with the models that use the same kind
of encoder (either the BiLSTM based encoder or
the BERT based encoder). The only exception is
on NYT24∗, where the F1 of GRTELSTM is about
1% lower than that of PMEILSTM . However, on
the same dataset, the F1 score of GRTEBERT is
about 2.9% higher than that of PMEIBERT .

The results also show that GRTE achieves much
better results on NYT29, NYT24 and WebNLG:
its F1 scores improve about 1.9%, 1.1%, and
3.3% over the previous best models on these three
datasets respectively. Contrastively, its F1 scores
improve about 0.5% and 0.5% over the previous
best models on NYT24∗ and WebNLG∗ respec-
tively. This is mainly because that GRTE could not
realize its full potential on NYT24∗ and WebNLG∗

where only one token of each entity is annotated.
For example, under this annotation standard, except
"N/A", "SSH", and "SST", all the other defined
labels in GRTE are redundant. But it should be
noted that the annotation standard on NYT24∗ and
WebNLG∗ simplifies the RTE task, there would
not be such a standard when a model is really de-
ployed. Thus, the annotation standard on NYT29,
NYT24 and WebNLG can better reveal the true per-
formance of a model. Accordingly, GRTE’s better
performance on them is more meaningful.

We can further see that compared with the pre-
vious best models, GRTE achieves more perfor-
mance improvement on WebNLG than on other
datasets. For example, GRTELSTM even outper-
forms all other compared baselines on WebNLG, in-
cluding those models that use BERT. We think this
is mainly because that the numbers of relations in
WebNLG are far more than those of in NYT29 and
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Model NYT29 NYT24? NYT24 WebNLG? WebNLG
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

CopyRE – – – 61.0 56.6 58.7 – – – 37.7 36.4 37.1 – – –
GraphRel – – – 63.9 60.0 61.9 – – – 44.7 41.1 42.9 – – –
OrderCopyRE – – – 77.9 67.2 72.1 – – – 63.3 59.9 61.6 – – –
ETL-Span 74.5? 57.9? 65.2? 84.9 72.3 78.1 85.5 71.7 78.0 84.0 91.5 87.6 84.3 82.0 83.1
WDec 77.7 60.8 68.2 – – – 88.1 76.1 81.7 – – – – – –
RSAN – – – – – – 85.7 83.6 84.6 – – – 80.5 83.8 82.1
RIN – – – 87.2 87.3 87.3 83.9 85.5 84.7 87.6 87.0 87.3 77.3 76.8 77.0
CasRelLSTM – – – 84.2 83.0 83.6 – – – 86.9 80.6 83.7 – – –
PMEILSTM – – – 88.7 86.8 87.8 84.5 84.0 84.2 88.7 87.6 88.1 78.8 77.7 78.2
TPLinkerLSTM – – – 83.8 83.4 83.6 86.0 82.0 84.0 90.8 90.3 90.5 91.9 81.6 86.4
CasRelBERT 77.0? 68.0? 72.2? 89.7 89.5 89.6 89.8? 88.2? 89.0? 93.4 90.1 91.8 88.3? 84.6? 86.4?

PMEIBERT – – – 90.5 89.8 90.1 88.4 88.9 88.7 91.0 92.9 92.0 80.8 82.8 81.8
TPLinkerBERT 78.0∗ 68.1∗ 72.7∗ 91.3 92.5 91.9 91.4 92.6 92.0 91.8 92.0 91.9 88.9 84.5 86.7
SPNBERT 76.0∗ 71.0∗ 73.4∗ 93.3 91.7 92.5 92.5 92.2 92.3 93.1 93.6 93.4 85.7? 82.9? 84.3?

GRTELSTM 74.3 67.9 71.0 87.5 86.1 86.8 86.2 87.1 86.6 90.1 91.6 90.8 88.0 86.3 87.1
GRTEBERT 80.1 71.0 75.3 92.9 93.1 93.0 93.4 93.5 93.4 93.7 94.2 93.9 92.3 87.9 90.0

GRTEw/o GFM 77.9 68.9 73.1 90.6 92.5 91.5 91.8 92.6 92.2 92.4 91.1 91.7 88.4 86.7 87.5
GRTEGRU GFM 78.2 71.7 74.8 92.5 92.9 92.7 93.4 92.2 92.8 93.4 92.6 93.0 90.1 88.0 89.0
GRTEw/o m−h 77.8 70.9 74.2 91.9 92.9 92.4 93.2 92.9 93.0 92.9 92.1 92.5 90.5 87.6 89.0
GRTEw/o shared 79.5 71.5 75.3 92.7 93.0 92.8 93.6 92.7 93.1 93.4 94.0 93.7 91.5 87.4 89.4

Table 2: Main results. A model with a subscript LSTM refers to replace its BERT based encoder with the BiLSTM
based encoder. ? means the results are produced by us with the available source code.

NYT24 (see Table 1), which means there are more
global associations of relations can be mined. Gen-
erally, the more relations and entities there are in a
dataset, the more global correlations there would
be among triples. Accordingly, our model could
perform more better on such kind of datasets than
other local features based methods. For example,
the number of relations in WebNLG is almost 7
times of those in NYT, and GRTE achieves much
more performance improvement over the compared
baselines on WebNLG than on NYT.

4.3 Detailed Results

In this section, we conduct detailed experiments to
demonstrate the effectiveness of our model from
following two aspects.

First, we conduct some ablation experiments to
evaluate the contributions of some main compo-
nents in GRTE. To this end, we implement follow-
ing model variants.

(i) GRTEw/o GFM , a variant that removes the
GFM module completely from GRTE, which is to
evaluate the contribution of GFM. Like previous ta-
ble filling based methods, GRTEw/o GFM extracts
triples only based on local features.

(ii) GRTEGRU GIF , a variant that uses GRU (tak-
ing H and TF

(t)
s/o as input) instead of Transformer

to generate the results in Eq. (4), which is to evalu-
ate the contribution of Transformer.

(iii) GRTEw/o m−h, a variant that replaces the
multi-head attention method in GFM with a single-
head attention method, which is to evaluate the
contribution of the multi-head attention.

(iv) GRTEw/o shared, a variant that uses different
parameters for the modules of TFG and GFM at
different iterations, which is to evaluate the contri-
bution of the parameter share mechanism.

All these variants use the BERT-based encoder.
And their results are shown in the bottom part of
Table 2, from which we can make following obser-
vations.

(1) The performance of GRTEw/o GFM drops
greatly compared with GRTE, which confirms the
importance of using two kinds of global features
for table filling. We can further notice that on
NYT29, NYT24, and WebNLG, the F1 scores
of GRTEw/o GFM increases by 0.4%, 0.4%, and
0.8% respectively over TPLinker. Both TPLinker
and GRTEw/o GFM extract triples based on lo-
cal features, and the main difference between
them is the table filling strategy. So these results
prove the effectiveness of our table filling strat-
egy. The F1 scores of GRTEw/o GFM on NYT24∗

and WebNLG∗ are slightly lower than those of
TPLinker, as explained above, this is because each
entity in NYT24∗ and WebNLG∗, only one token
is annotated for each entity, GRTEw/o GFM could
not realize its full potential.
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Model NYT24? WebNLG?

Normal SEO EPO T = 1 T = 2 T = 3 T = 4 T ≥ 5 Normal SEO EPO T = 1 T = 2 T = 3 T = 4 T ≥ 5

CasRelBERT 87.3 91.4 92 88.2 90.3 91.9 94.2 83.7 89.4 92.2 94.7 89.3 90.8 94.2 92.4 90.9
TPLinkerBERT 90.1 93.4 94.0 90.0 92.8 93.1 96.1 90.0 87.9 92.5 95.3 88.0 90.1 94.6 93.3 91.6
SPNBERT 90.8 94.0 94.1 90.9 93.4 94.2 95.5 90.6 89.5∗ 94.1∗ 90.8∗ 89.5 91.3 96.4 94.7 93.8

GRTEBERT 91.1 94.4 95 90.8 93.7 94.4 96.2 93.4 90.6 94.5 96 90.6 92.5 96.5 95.5 94.4

Table 3: F1 scores on sentences with different overlapping pattern and different triplet number. Results of CasRel
are copied from TPLinker directly. “T” is the number of triples contained in a sentence. ∗ means the results are
produced by us with the provided source codes.

Figure 3: F1 results under different N.

(2) The performance of GRTEGRU GFM drops
compared with GRTE, which indicates Trans-
former is more suitable for the global feature min-
ing than GRU. But even so, we can see that on all
datasets, GRTEGRU GFM outperforms almost all
previous best models and GRTEw/o GFM in term
of F1, which further indicates the effectiveness of
using global features.

(3) The results of GRTEw/o m−h are lower than
those of GRTE, which shows the multi-head atten-
tion mechanism plays an important role for global
feature mining. In fact, the importance of differ-
ent features is different, the multi-head attention
mechanism performs the feature mining process
from multiple aspects, which is much helpful to
highlight the more important ones.

(4) The results of GRTEw/o shared are slightly
lower than those of GRTE, which shows the share
mechanism is effective. In fact, the mechanism
of using distinct parameters usually works well
only when the training samples are sufficient. But
this condition is not well satisfied in RTE since
the training samples of a dataset are not sufficient
enough to train too many parameters.

Second, we evaluate the influence of the itera-
tion number N . The results are shown in Figure 3,
from which following observations can be made.

(1) On NYT24∗ and WebNLG∗, the annotation
standard is relatively simple. So GRTE achieves

the best results with two iterations. But on NYT29,
NYT24, and WebNLG, more iterations are usually
required. For example, GRTE achieves the best
results when N is 3, 3, and 4 respectively on them.

(2) On all datasets, GRTE gets obvious perfor-
mance improvement (even the maximum perfor-
mance improvement on some datasets) at N = 2
where GFM begins to play its role , which indicates
again that using global features can significantly
improve the model performance.

(3) GRTE usually achieves the best results within
a small number of iterations on all datasets includ-
ing WebNLG or WebNLG∗ where there are lots of
relations. In fact, GRTE outperforms all the pervi-
ous best models even when N = 2. This is a very
important merit because it indicates that even used
on some datasets where the numbers of relations
are very large, the efficiency would not be a burden
for GRTE, which is much meaningful when GRTE
is deployed in some real scenarios.

4.4 Analyses on Different Sentence Types
Here we evaluate GRTE’s ability for extracting
triples from sentences that contain overlapping
triples and multiple triples. For fair comparison
with the previous best models (CasRel, TPLinker,
and SPN), we follow their settings which are: (i)
classifying sentences according to the degree of
overlapping and the number of triples contained
in a sentence, and (ii) conducting experiments on
different subsets of NYT24∗ and WebNLG∗.

The results are shown in Table 3. We can see
that: (i) GRTE achieves the best results on all three
kinds of overlapping sentences on both datasets,
and (ii) GRTE achieves the best results on almost
all kinds of sentences that contain multiple triples.
The only exception is on NYT24∗ where the F1
score of GRTE is slightly lower than that of SPN
when T is 1. The main reason is that there are less
associations among token pairs when T is 1, which
slightly degrades the performance of GRTE.
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Model NYT24? WebNLG?

Paramsall Propencoder Inference Time Paramsall Propencoder Inference Time

CasRelBERT 107,719,680 99.96% 53.9 107,984,216 99.76% 77.5
TPLinkerBERT 109,602,962 98.82% 18.1 / 83.5† 110,281,220 98.21% 26.9 / 120.4†

SPNBERT 141,428,765 76.58% 26.4 / 107.9† 150,989,744 71.73% 22.6 / 105.7†

GRTEBERT 119,387,328 90.72% 21.3 / 109.6† 122,098,008 88.70% 28.7 / 124.1†

Table 4: Computational efficiency. Paramsall is the number of parameters for the entire model. Propencoder refers
to the proportion of encoder parameters in the total model parameters. Inference Time represents the average time
(millisecond) the model takes to process a sample. † marks the inference time when the batch size is set to 1.

In fact, GRTE maintains a table for each relation,
and the TG module extracts triples for each relation
independently. Thus it can well handle above two
kinds of complex sentences by nature.

4.5 Analyses on Computational Efficiency

Table 4 shows the comparison results of computa-
tional efficiency between GRTE and some previous
best models. To be fair, we follow the settings
in TPLinker: analyze the parameter scale and the
inference time on NYT∗ and WebNLG∗. All the re-
sults are obtained by running the compared models
on a TitanXP, and the batch size is set to 6 for all
models that can be run in a batch mode.

The parameter number of GRTE is slightly larger
than that of TPLinker, which is mainly due to the us-
ing of a Transformer-based model. But when com-
pared with SPN that uses the Transformer model
too, we can see that GRTE has a smaller number of
parameters due to its parameter share mechanism.

We can also see that GRTE achieves a very com-
petitive inference speed. This is mainly because
of following three reasons. First, GRTE is a one-
stage extraction model and can process samples in
a batch mode (CasRel can only process samples
one by one). Second, as analyzed previously, it has
an efficient table filling strategy that needs to fill
fewer table items. Third, as analyzed previously,
GRTE often achieves the best results within a small
number of iterations, thus the iteration operations
will not have too much impact on the inference
speed of GRTE.

In fact, as TPLinker pointed out that for all the
models that use BERT (or other kinds of pre-trained
language models) as their basic encoders, BERT is
usually the most time-consuming part and takes up
the most of model parameters, so the time cost of
other components in a model is not significant.

Besides, there is another important merit of our
model: it needs less training time than existing

state-of-the-art models like CasRel, TPLinker, and
SPN etc. As pointed out previously, the epoch of
our model on all datasets is 50. But on the same
datasets, the epochs of all the mentioned models
are 100. From Table 4 we can see that all these
models have similar inference speed. For each
model, the training speed of each epoch is very
close to its inference speed (during training, there
would be extra time cost for operations like the
back propagation), thus we can easily know that
our model needs less time for training since our
model has a far less epoch number.

5 Conclusions

In this study, we propose a novel table filling based
RTE model that extracts triples based on two kinds
of global features. The main contributions of our
work are listed as follows. First, we make use of
the global associations of relations and of token
pairs. Experiments show these two kinds of global
features are much helpful for performance. Second,
our model works well on extracting triples from
complex sentences containing overlapping triples
or multiple triples. Third, our model is evaluated on
three benchmark datasets. Extensive experiments
show that it consistently outperforms all the com-
pared strong baselines and achieves state-of-the-art
results. Besides, our model has a competitive infer-
ence speed and a moderate parameter size.
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